첨부 소스 코드는 나눔고딕코딩 폰트를 사용합니다.
728x90
반응형
728x170
import keras.callbacks as callbacks
import keras.models as models
import keras.layers as layers
import keras.utils as utils
import matplotlib.pyplot as pp
import numpy as np

np.random.seed(5)

# 손실 이력 클래스를 정의한다.
class LossHistory(callbacks.Callback):
    def init(self):
        self.lossList = []
        
    def on_epoch_end(self, batch, logDictionary = {}):
        self.lossList.append(logDictionary.get("loss"))

# 소스 ND 배열 구하기 함수를 정의한다.
def GetSourceNDArray(sourceList, windowSize):
    targetList = []
    for i in range(len(sourceList) - windowSize):
        subsetList = sourceList[i:(i + windowSize + 1)]
        targetList.append([codeDictionary[item] for item in subsetList])
    return np.array(targetList)

print("데이터 로드를 시작합니다.")
        
codeDictionary = {"c4" : 0, "d4" : 1, "e4" : 2, "f4" :3 , "g4" : 4 , "a4" : 5 , "b4" : 6,
                  "c8" : 7, "d8" : 8, "e8" : 9, "f8" :10, "g8" : 11, "a8" : 12, "b8" : 13}

indexDictionary = {0 : "c4", 1 : "d4", 2 : "e4", 3  : "f4", 4  : "g4", 5  : "a4", 6  : "b4",
                   7 : "c8", 8 : "d8", 9 : "e8", 10 : "f8", 11 : "g8", 12 : "a8", 13 : "b8"}

sequenceList = ["g8", "e8", "e4", "f8", "d8", "d4", "c8", "d8", "e8", "f8", "g8", "g8", "g4",
                "g8", "e8", "e8", "e8", "f8", "d8", "d4", "c8", "e8", "g8", "g8", "e8", "e8", "e4",
                "d8", "d8", "d8", "d8", "d8", "e8", "f4", "e8", "e8", "e8", "e8", "e8", "f8", "g4",
                "g8", "e8", "e4", "f8", "d8", "d4", "c8", "e8", "g8", "g8", "e8", "e8", "e4"]

sourceNDArray = GetSourceNDArray(sequenceList, windowSize = 4)

trainInputNDArray         = sourceNDArray[:, 0:4]
trainCorrectOutputNDArray = sourceNDArray[:, 4  ]

maximumIndex = 13

trainInputNDArray = trainInputNDArray / float(maximumIndex)
trainInputNDArray = np.reshape(trainInputNDArray, (50, 4, 1))

trainCorrectOutputNDArray = utils.np_utils.to_categorical(trainCorrectOutputNDArray)

outputNodeCount = trainCorrectOutputNDArray.shape[1]

print("데이터 로드를 종료합니다.")

print("모델 정의를 시작합니다.")

model = models.Sequential()

model.add(layers.LSTM(128, input_shape = (4, 1)))
model.add(layers.Dense(outputNodeCount, activation = "softmax"))

model.compile(loss = "categorical_crossentropy", optimizer = "adam", metrics = ["accuracy"])

print("모델 정의를 종료합니다.")

print("모델 학습을 시작합니다.")

history = LossHistory()

history.init()

model.fit(trainInputNDArray, trainCorrectOutputNDArray, epochs = 2000, batch_size = 14, verbose = 2, callbacks = [history])

pp.plot(history.lossList)

pp.ylabel("loss")
pp.xlabel("epoch")
pp.legend(["train"], loc = "upper left")

pp.show()

print("모델 학습을 종료합니다.")

print("모델 평가를 시작합니다.")

evaluationList = model.evaluate(trainInputNDArray, trainCorrectOutputNDArray)

print("%s : %.2f%%" % (model.metrics_names[1], evaluationList[1] * 100))

print("모델 평가를 종료합니다.")

print("모델 사용을 시작합니다.")

predictionCount = 50

print("한 스텝 예측을 시작합니다.")

resultSequenceList = ["g8", "e8", "e4", "f8"]

predictionNDArray = model.predict(trainInputNDArray)

for i in range(predictionCount):
    index = np.argmax(predictionNDArray[i])
    resultSequenceList.append(indexDictionary[index])
    
print("한 스텝 예측 : ", resultSequenceList)

print("한 스텝 예측을 종료합니다.")

print("곡 전체 예측을 시작합니다.")

inputSequenceList  = ["g8", "e8", "e4", "f8"]
resultSequenceList = inputSequenceList
inputSequenceList  = [codeDictionary[item] / float(maximumIndex) for item in inputSequenceList]

for i in range(predictionCount):
    inputSequenceNDArray = np.array(inputSequenceList)
    inputSequenceNDArray = np.reshape(inputSequenceNDArray, (1, 4, 1)) # 샘플 수, 타임 스텝 수, 속성 수
    predictionNDArray = model.predict(inputSequenceNDArray)
    index = np.argmax(predictionNDArray)
    resultSequenceList.append(indexDictionary[index])
    inputSequenceList.append(index / float(maximumIndex))
    inputSequenceList.pop(0)

print("곡 전체 예측 : ", resultSequenceList)

print("곡 전체 예측을 종료합니다.")
728x90
반응형
그리드형(광고전용)
Posted by icodebroker
TAG , ,

댓글을 달아 주세요