728x90
반응형
728x170
■ 학습을 조기 종료시키는 방법을 보여준다.
▶ 예제 코드 (PY)
import keras
import keras.callbacks as callbacks
import keras.datasets.mnist as mnist
import keras.models as models
import keras.utils as utils
import keras.layers as layers
import matplotlib.pyplot as pp
import numpy as np
np.random.seed(3)
print("데이터 로드를 시작합니다.")
(trainInputNDArray, trainCottectOutputNDArray), (testInputNDArray, testCorrectOutputNDArray) = mnist.load_data()
# trainInputNDArray : (60000, 28, 28)
# trainCottectOutputNDArray : (60000,)
# testInputNDArray : (10000, 28, 28)
# testCorrectOutputNDArray : (10000,)
# 훈련/검증 데이터를 분리한다.
validationInputNDArray = trainInputNDArray[50000:]
validationCorrectOutputNDArray = trainCottectOutputNDArray[50000:]
trainInputNDArray = trainInputNDArray[:50000]
trainCottectOutputNDArray = trainCottectOutputNDArray[:50000]
# 훈련/검증/테스트 데이터
trainInputNDArray = trainInputNDArray.reshape(50000, 784).astype("float32") / 255.0
validationInputNDArray = validationInputNDArray.reshape(10000, 784).astype("float32") / 255.0
testInputNDArray = testInputNDArray.reshape(10000, 784).astype("float32") / 255.0
# trainInputNDArray : (50000, 784)
# validationInputNDArray : (10000, 784)
# testInputNDArray : (10000, 784)
# 훈련/검증 데이터를 섞는다.
trainRandomIndexNDArray = np.random.choice(50000, 700)
validationRandomIndexNDArray = np.random.choice(10000, 300)
trainInputNDArray = trainInputNDArray[trainRandomIndexNDArray]
trainCottectOutputNDArray = trainCottectOutputNDArray[trainRandomIndexNDArray]
validationInputNDArray = validationInputNDArray[validationRandomIndexNDArray]
validationCorrectOutputNDArray = validationCorrectOutputNDArray[validationRandomIndexNDArray]
# trainInputNDArray : (700, 784)
# trainCottectOutputNDArray : (700,)
# validationInputNDArray : (300, 784)
# validationCorrectOutputNDArray : (300,)
# 정답 데이터에 대해 원핫 인코딩 처리한다.
trainCottectOutputNDArray = utils.np_utils.to_categorical(trainCottectOutputNDArray)
validationCorrectOutputNDArray = utils.np_utils.to_categorical(validationCorrectOutputNDArray)
testCorrectOutputNDArray = utils.np_utils.to_categorical(testCorrectOutputNDArray)
# trainCottectOutputNDArray : (50000, 10)
# validationCorrectOutputNDArray : (10000, 10)
# testCorrectOutputNDArray : (10000, 10)
print("데이터 로드를 종료합니다.")
print("모델 정의를 시작합니다.")
model = models.Sequential()
model.add(layers.Dense(units = 64, input_dim = 784, activation = "relu"))
model.add(layers.Dense(units = 10, activation = "softmax"))
model.compile(loss = "categorical_crossentropy", optimizer = "sgd", metrics = ["accuracy"])
print("모델 정의를 종료합니다.")
print("모델 학습을 시작합니다.")
earlyStopping = callbacks.EarlyStopping(patience = 20)
history = model.fit(trainInputNDArray, trainCottectOutputNDArray, epochs = 1000, batch_size = 100,\
validation_data = (validationInputNDArray, validationCorrectOutputNDArray), callbacks = [earlyStopping])
print("모델 학습을 종료합니다.")
print("학습 결과를 조회합니다.")
evaluateList = model.evaluate(testInputNDArray, testCorrectOutputNDArray, batch_size = 32)
print("")
print("loss : " + str(evaluateList[0]))
print("accuracy : " + str(evaluateList[1]))
figure, lossAxeSubplot = pp.subplots()
accuracyAxeSubplot = lossAxeSubplot.twinx()
lossAxeSubplot.plot(history.history["loss" ], "y", label = "train loss")
lossAxeSubplot.plot(history.history["val_loss"], "r", label = "val loss" )
accuracyAxeSubplot.plot(history.history["acc" ], "b", label = "train acc")
accuracyAxeSubplot.plot(history.history["val_acc"], "g", label = "val acc" )
lossAxeSubplot.set_xlabel("epoch")
lossAxeSubplot.set_ylabel("loss")
lossAxeSubplot.legend(loc = "upper left")
accuracyAxeSubplot.set_ylabel("accuracy")
accuracyAxeSubplot.legend(loc = "lower left")
pp.show()
728x90
반응형
그리드형(광고전용)
'Python > keras' 카테고리의 다른 글
[PYTHON/KERAS] Sequential 클래스 : model_from_json 메소드를 사용해 모델 구하기 (0) | 2018.08.20 |
---|---|
[PYTHON/KERAS] Sequential 클래스 : to_json 메소드를 사용해 JSON 문자열 구하기 (0) | 2018.08.20 |
[PYTHON/KERAS] 학습 모델 아키텍처 이미지 저장하기 (0) | 2018.08.19 |
[PYTHON/KERAS] 학습 모델 로드하기 (0) | 2018.08.19 |
[PYTHON/KERAS] 학습 모델 저장하기 (0) | 2018.08.19 |
[PYTHON/KERAS] 커스텀 히스토리 콜백 함수 사용하기 (0) | 2018.08.19 |
[PYTHON/KERAS] 히스토리를 텐서보드와 연동하기 (0) | 2018.08.19 |
[PYTHON/KERAS] 히스토리 기능 사용하기 (0) | 2018.08.15 |
[PYTHON/KERAS] 모델 데이터 로드하기 (0) | 2018.08.15 |
[PYTHON/KERAS] 다층 퍼셉트론 신경망 만들기 (MNIST) (0) | 2018.08.15 |
댓글을 달아 주세요