[PYTHON/TENSORFLOW] 다층 퍼셉트론 신경망 만들기 (MNIST) : 4계층 ReLU 1계층 Softmax
Python/tensorflow 2018. 8. 1. 23:03728x90
반응형
728x170
■ 4계층 ReLU 1계층 Softmax로 구성된 다층 퍼셉트론 신경망을 만드는 방법을 보여준다.
▶ 예제 코드 (PY)
import tensorflow as tf
import tensorflow.examples.tutorials.mnist as mnist
inputLayerNodeCount = 784
hiddenLayer1NodeCount = 200
hiddenLayer2NodeCount = 100
hiddenLayer3NodeCount = 60
hiddenLayer4NodeCount = 30
outputLayerNodeCount = 10
summaryLogDirectoryPath = "log_mnist_4_layer_relu_1_layer_softmax"
batchSize = 100
learningRate = 0.005
epochCount = 10
mnistDatasets = mnist.input_data.read_data_sets("data", one_hot = True)
inputLayerTensor = tf.placeholder(tf.float32, [None, inputLayerNodeCount])
hiddenLayer1WeightVariable = tf.Variable(tf.truncated_normal([inputLayerNodeCount , hiddenLayer1NodeCount], stddev = 0.1))
hiddenLayer1BiasVariable = tf.Variable(tf.zeros([hiddenLayer1NodeCount]))
hiddenLayer2WeightVariable = tf.Variable(tf.truncated_normal([hiddenLayer1NodeCount, hiddenLayer2NodeCount], stddev = 0.1))
hiddenLayer2BiasVariable = tf.Variable(tf.zeros([hiddenLayer2NodeCount]))
hiddenLayer3WeightVariable = tf.Variable(tf.truncated_normal([hiddenLayer2NodeCount, hiddenLayer3NodeCount], stddev = 0.1))
hiddenLayer3BiasVariable = tf.Variable(tf.zeros([hiddenLayer3NodeCount]))
hiddenLayer4WeightVariable = tf.Variable(tf.truncated_normal([hiddenLayer3NodeCount, hiddenLayer4NodeCount], stddev = 0.1))
hiddenLayer4BiasVariable = tf.Variable(tf.zeros([hiddenLayer4NodeCount]))
outputLayerWeightVariable = tf.Variable(tf.truncated_normal([hiddenLayer4NodeCount, outputLayerNodeCount ], stddev = 0.1))
outputLayerBiasVariable = tf.Variable(tf.zeros([outputLayerNodeCount]))
hiddenLayer1OutputTensor = tf.nn.relu(tf.matmul(inputLayerTensor , hiddenLayer1WeightVariable) + hiddenLayer1BiasVariable)
hiddenLayer2OutputTensor = tf.nn.relu(tf.matmul(hiddenLayer1OutputTensor, hiddenLayer2WeightVariable) + hiddenLayer2BiasVariable)
hiddenLayer3OutputTensor = tf.nn.relu(tf.matmul(hiddenLayer2OutputTensor, hiddenLayer3WeightVariable) + hiddenLayer3BiasVariable)
hiddenLayer4OutputTensor = tf.nn.relu(tf.matmul(hiddenLayer3OutputTensor, hiddenLayer4WeightVariable) + hiddenLayer4BiasVariable)
outputLayerOutputTensor = tf.matmul(hiddenLayer4OutputTensor, outputLayerWeightVariable ) + outputLayerBiasVariable
outputLayerOutputTensorSoftmax = tf.nn.softmax(outputLayerOutputTensor)
correctOutputTensor = tf.placeholder(tf.float32, [None, outputLayerNodeCount])
costTensor = tf.nn.softmax_cross_entropy_with_logits(logits = outputLayerOutputTensor, labels = correctOutputTensor)
costTensor = tf.reduce_mean(costTensor) * 100
correctPredictionTensor = tf.equal(tf.argmax(outputLayerOutputTensorSoftmax, 1), tf.argmax(correctOutputTensor, 1))
accuracyTensor = tf.reduce_mean(tf.cast(correctPredictionTensor, tf.float32))
optimizerOperation = tf.train.AdamOptimizer(learningRate).minimize(costTensor)
tf.summary.scalar("cost" , costTensor )
tf.summary.scalar("accuracy", accuracyTensor)
summaryTensor = tf.summary.merge_all()
with tf.Session() as session:
session.run(tf.global_variables_initializer())
fileWriter = tf.summary.FileWriter(summaryLogDirectoryPath, graph = tf.get_default_graph())
batchCount = int(mnistDatasets.train.num_examples / batchSize)
for epoch in range(epochCount):
for batch in range(batchCount):
batchInputNDArray, batchCorrectOutputNDArray = mnistDatasets.train.next_batch(batchSize)
_, summary = session.run([optimizerOperation, summaryTensor], feed_dict = {inputLayerTensor : batchInputNDArray, correctOutputTensor : batchCorrectOutputNDArray})
fileWriter.add_summary(summary, epoch * batchCount + batch)
print("Epoch : ", epoch)
print("정확도 : ", accuracyTensor.eval(feed_dict = {inputLayerTensor : mnistDatasets.test.images, correctOutputTensor : mnistDatasets.test.labels}))
print("학습이 완료되었습니다.")
728x90
반응형
그리드형(광고전용)
'Python > tensorflow' 카테고리의 다른 글
[PYTHON/TENSORFLOW] 오토 인코더 만들기 (0) | 2018.08.07 |
---|---|
[PYTHON/TENSORFLOW] 컨볼루션 신경망 만들기 (얼굴 감정 판정) (0) | 2018.08.05 |
[PYTHON/TENSORFLOW] 컨볼루션 신경망 만들기 (MNIST) (0) | 2018.08.04 |
[PYTHON/TENSORFLOW] 컨볼루션 신경망 만들기 (MNIST) (0) | 2018.08.03 |
[PYTHON/TENSORFLOW] 다층 퍼셉트론 신경망 만들기 (MNIST) : 4계층 ReLU Dropout 1계층 Softmax (0) | 2018.08.01 |
[PYTHON/TENSORFLOW] 다층 퍼셉트론 신경망 만들기 (MNIST) : 4계층 Sigmoid 1계층 Softmax (0) | 2018.08.01 |
[PYTHON/TENSORFLOW] 신경망 모델 로드하기 (0) | 2018.08.01 |
[PYTHON/TENSORFLOW] 다층 퍼셉트론 신경망 만들기 (MNIST) : 1계층 Softmax (0) | 2018.07.31 |
[PYTHON/TENSORFLOW] 단일 입력 뉴런 만들기 (0) | 2018.07.30 |
[PYTHON/TENSORFLOW] Session 클래스 : run 메소드를 사용해 피드 연산하기 (0) | 2018.07.29 |
댓글을 달아 주세요